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Abstract

Nonisothermal reaction-diffusion systems control the behavior of many transport and rate processes in physical, chemical and biological systems,
such as pattern formation and chemical pumps. Considerable work has been published on mathematically coupled nonlinear differential equations
by neglecting thermodynamic coupling between a chemical reaction and transport processes of mass and heat. This study presents the modeling of
thermodynamically coupled system of a simple elementary chemical reaction with molecular heat and mass transport. The thermodynamic coupling
refers that a flow occurs without or against its primary thermodynamic driving force, which may be a gradient of temperature or chemical potential
or reaction affinity. The modeling is based on the linear nonequilibrium thermodynamics approach by assuming that the system is in the vicinity of
global equilibrium. The modeling equations lead to unique definitions of cross-coefficients between a chemical reaction and heat and mass flows
in terms of kinetic parameters, transport coefficients and degrees of coupling. These newly defined parameters need to be determined to describe
some coupled reaction-transport systems. Some methodologies are suggested for the determination of the parameters and some representative
numerical solutions for coupled reaction-transport systems are presented.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Considerable work has been published on mathematically
coupled nonlinear differential equations on reaction-diffusion
systems in porous catalyst by neglecting the thermodynamic
coupling. Here, the thermodynamic coupling refers that a flow
(i.e. heat or mass flow or a reaction velocity) occurs without
its primary thermodynamic driving force, or opposite to the
direction imposed by its primary driving force. The principles
of thermodynamics allow the progress of a process without or
against its primary driving force only if it is coupled with another
spontaneous process. This is consistent with the statement of sec-
ond law, which states that a finite amount of organization may be
obtained at the expense of a greater amount of disorganization
in a series of coupled spontaneous processes.

Thermodynamically coupled chemical reaction-transport
systems control the behavior of many transport and rate pro-
cesses in physical, chemical and biological systems, and require
a through analysis accounting the induced flows by cross-effects
[1-13]. More than 50 years ago, Turing [1] demonstrated that
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a reaction-diffusion system with appropriate nonlinear kinetics
can cause instability in a homogeneous steady state and gener-
ate stable concentration patterns. Also the energy coupling in
the membranes of living cells plays major role in the respira-
tory electron transport chain leading to synthesizing adenosine
triphosphate (ATP). The ATP synthesis in turn, is matched and
synchronized to cellular ATP utilization ADP + P; + nHj['1 =
ATP + H,0 + nHJ,,, where ‘in’ and ‘out’ denote two phases
separated by a membrane and n is the ratio H/ATP, show-
ing the level of transmembrane proton transport for each ATP
to be synthesized [7]. Consequently, the hydrolysis of ATP is
coupled to transporting substrates and maintaining the essential
thermodynamic forces of ion electrochemical gradients [2—6].
For example, Ca2*-ATPase in the plasma membranes of most
cells pump Ca”* against a steep concentration gradient out of
cytosol, while simultaneously counterport H* ions [5].

This study presents the modeling equations for thermody-
namically and mathematically coupled system of a reversible
elementary reaction with heat and mass flows. Such modeling
may improve our understanding of some natural coupled pro-
cesses, such as molecular pumps. The modeling is based on
the linear nonequilibrium thermodynamics (LNET) formula-
tions by assuming that the system is in the vicinity of global
equilibrium (GE). Experimental investigations revealed that
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Nomenclature

ai, ap relations in Eq. (10)

A" nondimensional affinity in Eq. (53)

b relation in Eq. (50) (mol Km—2s~!)

C concentration (mol m_3)

Css reactant concentration at surface (mol m—>)

Da Damkéhler number

Dp. coupling coefficient related to the Dufour effect
(Jm?mol~'s™1)

Ds. effective diffusion coefficient for the substrate S
(m*s~")

Dre coupling coefficient related to the Soret effect
(molm~!s~ 1K1

E activation energy of the chemical reaction
(Jmol~1)

AH;  reaction enthalpy (Jmol~!)

J diffusive mass flux (flow) (molm—2s~1)

Jq conduction heat flux (flow) (W m~2)

Ji volumetric reaction rate (molm—3s~!)

ke effective thermal conductivity (W m~ K1)

ky first order reaction rate constant (s~ 1)

L characteristic half thickness (m)

Le modified Lewis number

Lix phenomenological coefficients

Ly coupling coefficient between chemical reaction
and heat flow (mol Km—2s~1)

Lg; coupling coefficient between chemical reaction
and mass flow (mol2 KJ~ ' m=2s~1)

n number of components

N; number of independent reactions

t time (s™1)

T temperature (K)

1% total volume of membrane (m?)

by ratio of forces

X thermodynamic force

Z dimensionless distance

Greek letters

@ volumetric entropy generation rate (W m~3 K1)

e effective thermal diffusivity (m%s™1)

B thermicity group Eq. (15), dimensionless

€ dimensionless parameter related to Soret effect in
Eq. (52)

y Arrhenius group Eq. (51)

n effectiveness, efficiency

[0 dimensionless temperature in Eq. (15)

K dimensionless parameter in Eq. (53)

As relation in Eq. (17) (J m® mol~2)

7 chemical potential

0 dimensionless concentration in Eq. (10)

0 density (kgm™)

o dimensionless parameter in Eq. (52)

T dimensionless time in Eq. (51)

w dimensionless parameter related to Dufour effect

in Eq. (53)

Subscripts
D Dufour

e effective

eq equilibrium

q heat

r reaction

S surface

S Soret

T thermal diffusivity

LNET is capable of describing thermodynamically coupled pro-
cesses of oxidative phosphorylation, mitochondrial H pumps
and (Na* and K*)-ATPase, because mainly due to enzymatic
feedback [2-5]. Moreover, the LNET formulation does not
require the detailed mechanism of the coupling [4,5,15-18].
Kinetic descriptions and considerations may lead to a loss of
the generality characteristics of thermodynamic formulations,
since the kinetics is based on specific models [3]. The model-
ing equations have produced some unique parameters related
to cross-coefficients between scalar process of chemical reac-
tion and vectorial processes of heat and mass flows. These
parameters combine the kinetic parameters, transport coeffi-
cients and degrees of thermodynamic coupling, and relate the
cross-interactions to measurable quantities. Some representative
solutions of coupled reaction-transport systems by Mathematica
are presented.

2. Background
2.1. Balance equations

We consider a reversible homogeneous elementary reaction
kg
between a substrate (S) and a product (P) S&2P, where k¢ and
ky
ky, are the forward and backward reaction rate constants, respec-
tively. This type of reaction system is common in chemical and
biological systems, such as unimolecular isomerization [17],
enzyme kinetics [2] and racemization of molecules with mirror-
image structures [18]. The well known balance equations are

aC
TS5 Vs + vs s (1)
dt
aC
3£:—Vh+wb )
t
aT
pcp@ = _qu + (—AH)J; 3

where Jq is the vector of reduced heat flow J, = q — Y1 Ji H;,
q the total heat flow, H; the partial molar enthalpy of species
i and AH; is the heat of reaction. The reaction velocity
is dCs/vs dt=dCp/vpdt=J; and the parameters vs and vp
are the stoichiometric coefficients, which are negative for
reactants (vs=—1). By using the Fick and Fourier laws in
one-dimensional domain of y-direction and neglecting any ther-
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modynamic coupling, Egs. (1)—(3) become

aCs 3*Cs

o = DS,eTyz + vsJr “4)

aC 3*C

Ttp = DP&W; + vpJ; (5)
T T

IOCPQ = keﬁ + (=AH)J; (6)

where D; . is the effective diffusivity for component i and k. is
the effective thermal conductivity. For a simple slab geometry
shown in Fig. 1, the initial and boundary conditions are

t=0: Cs=Cs, Cp = Cpo, T=T, @)

y==xL: Cs=Cs;, Cp = Cps,

T = T, (surface conditions) 8)
aC oC oT

y=20 S_ZP_ % (symmetry conditions) (9)

ay by
where L is the half thickness of the slab. Diffusion may reduce
averaged rates relative to that obtained if the concentration was
everywhere Csg. This limitation is quantified as the effective-
ness factor n, and expressed as 7 = (1/V)([ J:(C;)dV)/ J:(Cis),
where V is the volume [19].

At stationary state, eliminating the reaction terms from Eqs.
(4) and (5), and integrating twice with the boundary conditions
given above, concentrations of the species are related to each
other by

Op = aj + ax(1 — 6s) (10)
where
Cs Cp Cps Ds
Os=——, 0Op= , ay = ., ap =
CSs KCSS KCSS KDP,e
|
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Fig. 1. Schematic temperature and concentration profiles in a thin film.

where K is the chemical reaction equilibrium constant. The value
of a; determines the direction of reaction; the net reaction is
towards the P if a; < 1. After relating the two concentrations by
Eq. (10), at stationary state Eq. (4) becomes

d? Os

~52 = (Das + Da)0s — (Dasar + Dap) (11)

with the boundary conditions

de
bs(xL)=1, —(0)=0 (12)
dz
where 7 = %
ka2 kbL2
Dag = , Dap =
S.e DP,e

Dag and Dap are the Damkohler numbers and represent the
ratios of the forward and backward reaction rates to the diffu-
sion velocities (D;¢/L). Therefore, they measure the intrinsic
rates of the reactions relative to that of the diffusions, and
represent an interaction between reaction and diffusion [20].
If the reaction is very fast, Damkohler number is large. For
the product (P), an expression similar to Eq. (11) can also be
derived. Fig. 2 displays the concentration profiles of the species
of S and P at two different set of Damkohler numbers and
aj; =0.5. When Dag and Dap are very large the concentrations of
species S and P reach their equilibrium values within most of the
film, and the approximate values of equilibrium concentrations
become [20]

ai + (Dap/Das)
1% ~ 0 X — 13
S.eq P,eq 1+ (Dap/DaS) (13)

The relative diffusivities through the ratio of Damkohler num-
bers affect the equilibrium concentrations. Near the exposed
surface (z=0) the dimensional thickness of nonequilibrium
region § is proportional to the sum of the Damkdohler numbers
[20], and nondimensional nonequilibrium thickness 7' is pro-
portional to ratio of reaction rate and effective diffusivity and
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Fig. 2. Concentration profiles for diffusion in a film with a reversible reac-
tion. Bold line Dag =90, Dap =80, a; =0.5. Dashed line Das = 1.0, Dap =1.0,
a; =0.5.
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independent of the thickness L
, 6 1 1

7 =—=r

L~ JDas  Dap  /k/De

For large values of Damkohler numbers, the effectiveness
becomes 1 ~ 1/+/Da [19].

By eliminating of the reaction terms from Eqgs. (4) and (6)
and integrating twice with the known boundary conditions, the
temperature is related to the concentration by

(14)

¢ =1+ p1 —06s) (15)
where
0= 1 _ (_AHr)DS,eCSs

T’ (—vs)keTs

The value of 8 is a measure of nonisothermal effects; as S
approaches zero, system becomes isothermal.

2.2. Phenomenological equations

Reaction-diffusion systems with heat effects represent open
and nonequilibrium systems with thermodynamic forces of tem-
perature gradient, concentration gradient and affinity. For the
chemical reaction-transport system the local rate of entropy
production is [8,21]

® = IV <;> s (Vus)rp

T

(Vup)rp A
—Jp——+ Jis—=>0 16
Jp T + s Z (16)

where  (Vuj)rp = Zf;f(am/aci)vc,-. By wusing the
Gibbs—Duhem equation at constant temperature and pres-
sure (CsVus+CpVup=0) and no volume flow condition
JsVs +JpVp=0), where V; is the partial molar volume of
species i, Eq. (16) becomes

1 1 A
D =— — | VT — Js=AsVC Js— >0 17
Jq(T2) JsTs stJsy =z A7)

where

Cs ous
As =114+ — — ,  for(Vsg =~ V)
s ( + CP) <3CS>T,p or (Vs P)

where J; is the vector of mass flows, u; the chemical poten-
tial of species i and A is the affinity (A = — > viu;). Eq. (17)
consists of scalar processes of chemical reactions and vecto-
rial processes of heat and mass flows, while it excludes viscous,
electrical, and magnetic effects. Eq. (17) identifies the following
independent conjugate flows J; and forces X; to be used in the
linear phenomenological equations (PEs) when the system is in
the vicinity of GE

1 1 A
Js = _LSS?)\SVCS - LSqﬁVT + LSr? (18)

1 1 A
Jg = —Lgs5AsVCs — Laqs VT + Lgr (19)

1 1 A

2.3. The phenomenological coefficients

The phenomenological coefficients Lj appearing above
are related by various constraints, such as Onsager’s reci-
procity, Gibbs—Duhem equation at equilibrium, and the choice
of reference frame for diffusivities. The type the constraints,
on the other hand, depends on the choice of conjugate
flows and forces, and frame of reference. Due to Onsager’s
reciprocal rules (Lj=Lg;) the number coefficients to be
determined would be six instead of nine when the conju-
gate flows and forces are identified by a proper entropy
generation relation and the flows are related to the forces lin-
early.

Onsager’s reciprocal relations states that Lj =Ly; if J; and
Jir have the same parity under time reversal and L = —Ly; if
Ji and J; have the opposite parity. In the absence of perti-
nent symmetries or invariances, all types of cross-couplings
are possible and lead to nonvanishing cross-coefficients Lj.
If the structure of the system is invariant with respect to
some or all of the orthogonal transformations, then the
invariance will eliminate certain cross-couplings and their
cross-coefficients will vanish. If these symmetries are not
exact then the corresponding cross-couplings would be weak
and negligible. Of course the discussions above are valid
only if the entropy production relation is properly derived
using the correct and specific physics of a system considered
[22].

For the nonvanishing cross-coefficients Ly, all the forces con-
tribute for each flow. Here, Eqgs. (18)—(20) take into account
the thermodynamic couplings between vectorial processes and
between vectorial and scalar processes, which is possible in
an anisotropic medium according to the Curie—Prigogine prin-
ciple [15]. Curie—Prigogine principle states that “macroscopic
causes always have fewer or equal symmetries than the effects
they produce.” Therefore, a scalar thermodynamic force such as
chemical affinity, which has the high symmetry of isotropy, can-
not cause a diffusion flow, which has lower symmetry because
of its directionality. We can also state that a scalar cause
cannot produce a vectorial effect, and generally, irreversible
processes of different tensorial character (scalars, vectors and
higher-order tensors) do not couple with each other. Therefore,
the cross-coefficients Lg;, Lis, Lgr and Lyq would vanish in
isotropic media (as commonly assumed) or would have vec-
torial character due to morphology of the interface, which
separates reactants and products or due to compartmental struc-
ture causing an anisotropic character. For example, in active
transport in biological cells, the hydrolysis of ATP is coupled
with the flow of sodium ions outside of the cell. The flow
direction is controlled by the structure of the membrane and
coupling mechanisms in mitochondria. The medium may be
locally isotropic, although it is not spatially homogenous. In
this case, the coupling coefficients are associated with the whole
system [2].



110 Y. Demirel / Chemical Engineering Journal 139 (2008) 106-117

2.4. The degrees of couplings

The cross-coefficients determine the degrees of couplings
between the pair of flows

reg = LSq rs, = LSr
—_— T A/ r— ~ - 1/7
7 (LssLgg)"? (LssLi)'/?
Lig

Fg= ——3 (21)
T (L Lgg)'?

Here, rgq is the degree of coupling between heat and mass
flows, rs; between chemical reaction and heat flow and ryq is
between chemical reaction mass flow. The vectorial character of
the degrees of couplings rs; and ryq may reflect the morphologi-
cal and/or compartmental structure of medium where couplings
occur as well as the properties of the cross-coefficients Ls; and
Ly [2,5.8,15,16,18].

2.5. Determination of the coefficients

The diagonal elements of the phenomenological coefficients
Li, matrix L. may be identified using the Fick, Fourier and the
mass action laws. Comparison of the first term on the rhs of
Eq. (18) with Fick’s law (J = —Ds ¢V Cs) yields Lss = Ds ¢ T/As.
Similarly, comparison of the second term on the rhs of Eq.
(19) with Fourier’s law (Jq=—keVT) yields Lgq= keT%. The
cross-coefficients (Lgq or Lgs) may be represented by the Soret
coefficient (sT) or the thermal diffusion coefficient (D), which
are related to each other by Lgq =sTDs,eT2Cs =DTT2CS. The
Soret coefficient is the ratio of thermal diffusion coefficient
to ordinary diffusion coefficient (St =Dt/Ds_) at steady state.
The Soret coefficient changes in the range 1072 to 1073 K~!
for gases, nonelectrolytes and electrolytes, however it might be
larger for polymer solutions [18,23]. The Lgs (=D1T?Cs) may
be expressed by the Dufour coefficient Dp Lqs = DpCsT/As. For
Lgs = Lsq, we have Dp = DtTAgs, whichis proved experimentally
[18]. For liquids, the diffusion coefficient D is of the order of
103 cm? s~ ! and the thermal diffusion coefficient Dr is of the
order of 1078 to 1071% cm? s~! K. For gases, the order of magni-
tude for D and Dy is 10! cm?s land 1074 t0 10 % cm? s~ K,
respectively [18,21,24].

We may define two new effective diffusion coefficients of
(Dte and Dp) that are related to the thermal diffusion and the
Dufour effect, respectively

1
Dy = LSqﬁ =s7Ds Cs = D1Cs (22)

AS
DD,e = LqS? = DDCS (23)

As the general transport equations are for an anisotropic
medium to support the thermodynamic coupling between the
scalar and the vectorial processes, the transport coefficients
such as k and D become tensors of the second rank k and D
[8,18,20]. Here the effective transport coefficients incorporat-
ing the effects of the medium are taken into account for the
simplicity.

2.6. Reaction velocity

The affinity for the reaction considered is A =us — up. The
reaction velocity J; in terms of affinity is [8,16,18]

o= (1 Cexp (_IfT)) (24)

where Jir =krCs. If we expand Eq. (24) at near GE state, which
may be specified by the inequality |A/RT| < 1, then we have an
approximate linear relationship between the reaction velocity
and the chemical affinity for an elementary reaction

Jrf,eq A
h=—"7 (25)

Thus, an elementary reaction rate is uniquely defined by
the corresponding affinity since Jifeq becomes constant due to
uniform concentration at equilibrium when a system is in the
vicinity of GE with fast diffusion and heat conduction processes.
Comparing the third term on the right of Eq. (20) with Eq. (25),
the coefficient Ly, is defined by

Jrf,eq _ kiCs eq _ ko exp(—Et/RT)Cs eq (26)

R R R

where k, is the frequency and Er is the activation energy for
the forward reaction. The L, is dependent on the rate constant
and consequently on the equilibrium concentration Cs ¢q and the
amount of chemical catalyst.

Linear flow-force relations are valid when the Gibbs free
energy ranges less than 1.5kJmol~! for chemical reactions
[15,18]. However, some selected biological pathways occur at
near GE conditions [2,3], and for some chemical reactions, the
formalism of LNET can be used in wider ranges than usually
expected [14,25-28]. By conservation of mass, some flow-force
relations of enzyme catalyzed and other chemical reactions can
be described by a simple hyperbolic-tangent function. There-
fore, a plot of reaction velocity versus affinity has three regions;
the regions at very high positive and negative values of affin-
ity, the reaction velocity is almost independent of affinity. In
between, however, the reaction velocity varies smoothly leading
to a quasi-linear region around the inflection point. This region
extends the linear flow-force relations over a 7kJmol~! with
an error in the reaction velocity less than 15%. This behavior
is independent of the reaction rate constants, and mainly occurs
due to conservation conditions [27].

Ly =

2.7. The modified phenomenological equations

With these newly defined primary and cross-coefficients, Egs.
(18)—(20) become

A
JS = _DS,eVCS - DT,eVT + LSr? (27)
A
Jg=—DpeVCs — ke VT + Lqr? (28)

kaS,eq é
R T

1 1
Jr = —L;s ?)»5VCS — quﬁVT + 29)



Y. Demirel / Chemical Engineering Journal 139 (2008) 106-117 111

2.8. Determination of cross-coefficients for
reaction-transport system

If we can control the temperature and concentration gradients,
the coupling coefficients between the chemical reaction and the
flows of mass and heat may be determined by the following
relations

J
Lis = Ls; = (S)
A/T ) gcg=0,v7=0
0, A
_ ( Js ) ~ (JS ) (30)
NA/T) ) ves,vr ACA/T) ) ves.vr
J
Ly =Ly = (q)
A/T ) yeg—0,vT=0
0 A
_ (Jq ) ~ (Jq ) (1)
AA/T) ) veg v A(A/T) ) veg vr
For a closed system at stationary state Js =0, we have
A
Js = 0 = —Ds,eVCs - DT,eVT + LSr? (32)
Ls = (DsevSS 4 Dro L) =1 (33)
Sr — S,eA/T T,eA/T = LS
Using A =RT In(Jy/Jp) in Eq. (33), we get
LSr (DS,eVCS + DT,eVT) = LrS (34)

~ RIn(Jit/ Jrv)

On the other hand, at chemical equilibrium, where A =0 and
J: =0, we have

1 1
Je=0=~Lis25VCs ~ Lig 5 VT (35)

and the two coupling coefficients are related to each other by

VCs
—Lrs T}\.STT = Lqr (36)
By using the relationship —Csst=VCs/VT at steady state,

the coefficient L, in terms of the Soret coefficient s becomes

Ly =

qu = LisTAsCsst (37)
Using Eq. (34) in Eq. (37), we find
TAasCssT
rq = W[Ds,evcs + DT,eVT] (38)

Eqgs. (34) and (38) suggest that the cross-coefficients Lq and Lg
are related to the gradients of concentration and temperature, and
control the induced effects between vectorial flows of heat and
mass, and the scalar reaction velocity.

3. Coupled system of chemical reaction and heat and
mass flows

By inserting Eqgs. (27)—(29) into Eq. (1) and Eq. (3), we may
describe the thermodynamically and mathematically coupled

system of chemical reaction and heat and mass flows

dCs A
e = — <—Ds)eVCS — D1 VT + LsrT>
As Liq ktCs,eq A
— | -Li—VCs— —=VT + ———— — 39
( s VCs — VT + — = (39)
or \Y Dp.VCs — k.VT + L, A
Cp— = — — - —
PCp ot D,eVLS e ar'p
As L kiCs eq A
—AH, —Ls—VCs — —=VT — —
+( r) ( s Ve — VI +———
(40)
Under mechanical equilibrium, we have
Wi o 1 (Vi)
v (7) - V(=) AT
VT (Vi
= —H—y +— @1

where H; is the partial enthalpy of species i. By using
the definition of affinity (A=pus—up) and Eq. (41) for
the two components S and P with the Gibbs—Duhem
equation (CsVus+CpVup=0) and the following relations
As=(1+Cs/Cp)(dus/dCs)Tp (for Vs=Vp), AG? + T AS; =
A H, we obtain

A A _AH,
v(Z :(v(ﬁ)—v(@))zivcs— ‘YT
T T T T 72

(42)
Substituting Eq. (42) in Egs. (39) and (40), we have
aC L Ls/(—AH,
&S _ Dg eVZCS + Dt eV2T+ rq + Lsr( r)VT
ot ' ' T2
kiCs eq A
_ f S,eqi (43)
R T
oT As[(—AH)L L
pep s = DpeV*Cs + ke V2T — sl r; s T Lol g o
—AH)ktCs eq A
( r) fLS,eq a (44)

R T

where the group (A/RT) is the dimensionless affinity A* and may
be expressed by

A=A k@t (BS) 2w (K) pm (S
RT ap ko Cp
(45)

In Eq. (45), the activities of ag and ap are assumed to be equal to
concentrations Cgs and Cp, respectively, by neglecting the non-
ideality effects on the species. Using the Arrhenius equations,
we have

k Ey — Ef
In (f> _ b f (46)
kp RT
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Using Eq. (46), we reduce Eqgs. (43) and (44) to

9C Lig + Ls:(—AH,
75 — DS CVZCS + DT eva + Tq + Sl’( I‘)VT
ot ’ ’ T2
—Ex Ey, — E¢ Cs
- |:CS,eqk0 exp < RT )] ( T +1In (CP)>
47
T As[(—AH)Ls + L
pep— = DD,eVZCS + keva B sl( L + qr] VCs
ot T
F(—AH,) | Cs ek —Ei
r S,eqKo €EXP RT
Ep — E¢ Cs
— TIn{ — 48
X < RT + In (Cp)) (48)

One-dimensional forms of Eqgs. (47) and (48) in the y-direction
are

oCs _ . #Cs D 82T+ b T
o gy Tt Ty
—E¢ Ey — Ef Cs
[esateen (37)] (P +0(3))
(49)
dT  Dp. 3*Cs 3T  Asb Cs
e IESs L 00 ASD s
ot pcp  9y? ‘92 pepT By
4 TR ek —Er
€X e
pcp S,eqKo €XP RT
Ey — Ef Cs
=~ 4In|= 50
g < Rt " (cp 0
where

b= Liq+ Ls(—AHy) = LulLqgryy + Lssr§,(—AH)]

kaS,eqT 2 DS,e 2
= R keTrrq + s rs.(—AH;)

Eqgs. (49) and (50) use the same initial and boundary conditions
given in Egs. (7)—(9). With the following parameters

y Ds,et L’ko exp(Er/RTy)
= -, T=—5" as = )
L L2 DS,e
E E ke/pC,
v = f’ Vb=7b, Le:ﬂzi 51)
RT, RT; Ds e Ds e
Nondimensional forms of Eqgs. (49) and (50) become
s %05 ¢ o dp
R A BTk AT
at 072 072 %oz
1
—A*Dagbs,eq eXp [yf <1 — ﬂ (52)
4

1 3p 9% %05 K 365
Ledr 02 ' a2 ¢ oz
“FA*DaS,BeS,eq eXp |:Vf (] - ;)] (53)
where
e — DT,eTs , w = DD,ecs’
DS,eCSs ke Ty
o bL _ [Ligq + Lsi(—AH,)IL = bCssLAs
TSDS,eCSs TSDS,eCSs ’ keTsz
and

2 Klay + ax(1 —0s)]

The parameter b is defined in Eq. (50). These equations sug-
gest that the degree of couplings beside the other parameters
would control the evolution and stability of the system. There-
fore, induced effects due to various coupling phenomena can
increase the possibility that the system may evolve to multiple
states and diversify its behavior [27,30]. The parameters ¢, o, ©
and « above are associated with the cross-coefficients and hence
control the coupled phenomena in the y-direction. Specifically,
the ¢ and w control the coupling between mass and heat flows,
while the o and « control the coupling between the chemical
reaction and mass flow, and chemical reaction and heat flow,
respectively. The initial and boundary conditions based on Egs.
(7)—(9) become

1=0: 0s =0so, Op=0py, @= ¢
z==x1,7>0: O6s5=1, =1, =1 (54)
00 00 0
z=0,7>0: —Sz—Pz—q):o
0z 0z 0z

Here, the nondimensional concentrations s and Op are related
approximately to each other by the relation 6p = aj + ax(1 — 6s),
although it is derived for stationary states. Accuracy of the
solutions obtained from Egs. (52) and (53) depends on the
reliable data, such as the effective transport coefficients and
cross-coefficients. The parameter b in terms of the degrees of
couplings rqr and rs; may improve the accuracy since the degrees
of couplings vary between —1 and +1. Some processes will
not be dependent on some of the forces when some certain
cross-coefficients vanish naturally. For example, some degrees
of imperfections due to parallel pathways of reaction or intrinsic
uncoupling within the pathway itself may lead to leaks and slips
in mitochondria [3,5].

4. Some special cases of coupled phenomena

Previously, we have considered the one-dimensional case
where heat and mass flows are coupled in a reaction-diffusion
system with heat effects, in which the cross-coefficients L;q and
Lqr as well as Lys and Ls; have vanished [21]. This means that the
reaction velocity is coupled neither with the heat flow nor with
the mass flow. Now we present the one-dimensional modeling
for the following thermodynamically coupled systems:
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(1) Coupled phenomena at stationary state.

(2) No coupling exists between the heat flow and chemical
reaction: Lyg =Ly =0.

(3) No coupling exists between the mass flow and chemical
reaction: L;s =Lg; =0.

In all the systems above, heat and mass flows are still
thermodynamically coupled. The modeling equations for these
processes are derived and discussed briefly in the following
sections.

4.1. Stationary coupling of chemical reactions with heat
and mass flows

Stationary forms of Eqgs. (52) and (53) are

Fos e odp 1
Ozﬁ Sg—F?&—A Das@s’eq exXp |:]/ (1 — g0>:|
(55)
FPo %05 ks 1
Ozg—i-w?—;aiz + A Dasﬁé’s’eq exp |:)/ (1 — (p):|
(56)
The boundary conditions are defined in Eq. (54).

Using the previously derived relations ¢ =1+ 8(1 —6s) and
Op=aj +ax(1 —0s) in Eq. (55), the temperature ¢ is related to
the concentration 65 and the concentrations p and 0 are related
to each other, and we have

d*6s oB dos
=(1— — >
O P T s —eeP &
_ K%—Vf) lnes] Dasfs oq
1+ B(1 —6s) ay + ax(1 —0s)
1
e {y (1 B 1+ﬁ(1—95))] en
where the products ¢ and o
/38 — (_AHr)DT,e
(—vs)ke
(—AH;)bL (_AHr)[qu + Lsr(—AHp)]L
ﬂo’ = =
(—vs)ke T2 (—vs)keT?

represent the cross-effects due to the thermodynamic coupling
at steady state. Similarly, an equation can be derived for the
temperature ¢.

4.2. Chemical reaction velocity coupled to mass flow:
Ly=L4y=0

This specific coupling may approximately represent the
active transport in biological cells in which hydrolysis of ATP is
coupled with the uphill transport of ions. Experimental investi-
gation of biological energy coupling systems shows that LNET
formulation is capable of describing mitochondrial H* pumps

[3] and helps understanding molecular slips and ion leaks of
Ca”* and H* [5,7].

The following rate of entropy production equation shows the
two contributions when there is no heat effect [2].

1 A
D =—]Js T)\S VCs + Jrs? = mass flow + chemical reaction
= output + input > 0 (58)

For the active transport in a biological cell, the chemical
reaction term (Jis(A/T)) represents the hydrolysis of ATP,
which facilitates pumping the ions opposite to the direction
imposed by their thermodynamic forces, and hence we have
(—=Js(1/T)AsV(Cs) <0. The efficiency of energy conversion for
active transport may be related to the degree of coupling by using
Eq. (58)

x[(Lss/Lu)'?x + rs;]

__output —Js(1/T)AsVCs _
rse + (Lre/Lss)"/?

B Jis(A/T)

input

where x is the ratio of thermodynamic forces
([(1/T)AsVCs/(A/T)]. The optimal efficiency would be a
function of the degree of coupling [2—4,13].

When the cross-coefficients Lyq and Lg vanish in Eqgs.
(27)—(29), the PEs become

A
Js = —DseVCs — D1 VT + LSr?

Jqg=-—Dp,eVCs —keVT (60)
1 koexp(—Ef/RT)Cs eq A
Jr = —-Lis=AsVC = — 61
v s AsVCs + R T (61)
so that the one-dimensional balance equations are
s  9%0s %9 o dp
R Al RS A Tt
ot 9z2 922 ¢? 0z
1
—A*Dag0s,cq €Xp [y (l — )] (62)
@
1 dp 3¢ 920 K’ 905
it A T AN
Le dt 972 22 ¢ 3z
1
“FA*DCIS,BGS,elep l:]/ (1 — >:| (63)
®
where
’r_ [LSr(_AHr)]L_ I(/ _ [LSr(_AHr)]CSsL)\S

s

TsDs ¢ Css ke TS2

By relating the cross-coefficient to the degree of coupling rg;,
the cross-coefficient Lg; may be eliminated

Dg T kas,eq> 2 (64)

Ls; = rSr(LSSer)]/Z = rSr( A R
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Fig. 3. Dimensionless temperature and concentration profiles obtained from Egs. (62) and (63) with y =27, $=0.066, Le=0.11,¢=1.0, »=0.01, A" =0.1, ¢’ =0.1,
«' =0.001.
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Fig. 4. Spatial integral averages obtained from Eqs. (66) and (67) using Eqgs. (62) and (63): (a) change of temperature with concentration when the time varies
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and the parameters o’ and «’ are defined in terms of the degree
of coupling rg;

o — o [ DT kiCs.eq | [(-AHIL
S )Ls R TSDS,eCSs ’

Ds o T k¢C 12 (ZAH)Css LA
K/:rSr< S.e f S,eq) ( r) Ss S (65)

As R ke T?

The parameter " combines the forward reaction rate constant,
diffusivity coefficient and thermal conductivity, and hence may
reflect an ‘indirect interaction’ between chemical reaction and
heat flow with vanishing cross-coefficients of Lyq and Lg;.

During a diffusion-controlled reaction, matter may be trans-
ported through an interface, which separates the reactants and
the product. The progress of the reaction may be affected
by the morphology of the interface with complicated struc-
ture, which controls the boundary conditions for the transport
problem [27-29]. Morphological stability of interfaces in
nonequilibrium systems may lead to self-organization and/or
pattern-formation in biological, physical, chemical and geolog-
ical systems [26,29]. Turing [1] demonstrated that even some
simple reaction-diffusion systems could lead to spatial orga-
nizations due to instability of stationary structure depending
on the activator—inhibitor interactions, control parameters and
boundary conditions (see Appendix A).

4.2.1. Concentration and temperature profiles

The Mathematica is used to solve the thermodynamically
coupled systems of Egs. (62) and (63) with the maximum steps
of infinity. Fig. 3 displays the dynamic behavior of the concentra-
tions and temperatures at two different Damkohler numbers. For
the fast reaction case with Dag = 100.0, nonequilibrium region is
considerably smaller and attained at a shorter time. For the slow
reaction case with Dag = 1.0, the system remains in nonequilib-
rium for most of the time and throughout the thickness of the
film. The surfaces of temperature closely follow the change in
concentrations, and reflect the effect of Damkohler numbers. As
expectedly, the rise of temperature is small as the value of § is
relatively small.

Since the dynamic behavior of a reaction-transport system
may be more apparent with the state—space diagrams, the tem-
perature and concentration profiles are replaced with the spatial
integral averages obtained from

1
o' (1) =/ 0(z, ) dz (66)
0

1
¢'() = /0 @(z, 1)dz (67)

Fig. 4a compares the state—space plots of temperature ver-
sus concentration when the time changes from zero to one.
Fig. 4b and c shows the changes of the spatial integral aver-
ages of temperatures and concentrations. The spatial integral
average of concentration reaches its equilibrium value approxi-
mately at 7=0.4 at Dags = 100. The changes are relatively sharp
at Dag =100.0 while they are gradual at Dag = 1.0, as expected.
Fig. 5 shows the spatial integral averages of temperatures and
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Fig. 5. Spatial averages obtained by integrating Eqgs. (62) and (63) with Eqs.
(66) and (67): (a) change of temperature with concentration when the time
varies between 0 and 1, (b) change of concentration with time and (c) change
of temperature with time for Dag = 100.0, y =27; B=0.066; Le=0.11, e=1.0,
®=0.001,A"=0.1; 0’ =0.001; &’ =0.001.

concentrations at Dag =100 with different values of coupling
parameters. The marginal changes on the spatial integral aver-
ages of temperatures and concentrations may result from the
coupling effects.

4.3. Chemical reaction velocity coupled to heat flow:
LSr = LrS =0

The cross-coefficients Lg, and L;s vanish, and we have the
following new PEs

Js = —DsVCs — D1.VT (68)

1
Jg = DpeVCs = keVT + Lor A (69)
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1 ko exp(=Ef/RT)Cseq A

Je= L5 VT + X . (70)

So that the one-dimensional balance equations become

s %05 ¢ o’ dp
R R Rk A T o
ot 972 072 ¢ 3z
1
—A* Dagbs eq eXp [y (1 — )} (71)
@
1 3¢ % 9205 K" 96
T _ T, 2T
Ledr 072 022 ¢ oz
1
+A* Das 05 ¢q eXp {y <1 - )] (72)
%
where
n LqL " LgCssLAs
TsDs ¢ Css ' keTS2

By relating the parameters o” and «” and the cross-coefficient
to the degree of coupling 74, we have

1/2 2 kiCs,eq 12
Lqr = rqr(quer) /2 = I'gr (keT R‘ ) (73)
kiCseq\'? L
O’// = rqr(keTz f Sﬁq) .
R TSDS,CCSS
kiCs.eq | '/ CssLAs
" = rg| ke TP = ‘ 74
K rqr( e R keTsz ( )

The parameter " combines the transport and rate coefficient of
ke, Ds ¢ and k.

5. Conclusions

The balance equations are derived for thermodynamically
and mathematically coupled system of chemical reaction and
heat and mass flows. This effort may be a starting point to
understand the molecular coupled phenomena between vecto-
rial and scalar processes, such as active transport in biological
cells. These modeling equations are based on the linear nonequi-
librium thermodynamics approach assuming that the system is in
the vicinity of global equilibrium and has anisotropic character.
The equations have revealed definitions of some unique param-
eters related to the cross-coefficients between the scalar process
of chemical reaction and the vectorial processes of heat and mass
flows. These parameters combine kinetic parameters, transport
coefficients, and degrees of thermodynamic couplings leading
to a path for determinations of these parameters by some mea-
surable quantities. The representative solutions of the modeling
equations for the coupled chemical reaction-mass flow system
are in line with the behavior of fast and slow chemical reactions
in a film.
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Appendix A

If we consider the change of affinity with time at constant
temperature and pressure, we have

dA _ (bA)  dCs 0
dt— \dCs/pp dt

It is possible to split the dCs into two parts: dCs =d.Cs + d;Cs,
which are the part resulting from the exchange with the sur-
rounding and the part due to a chemical reaction. The rate of the
second part is the reaction velocity d;Cs/dt=vgJ;. With these
relations Eq. (1) yields

. (BA> des _ Jrs<aA) )
dr dCs Jpp dt dCs ) 1p
Eq. (2) shows that affinity changes by rate of supply of matter and
chemical reaction velocity. Depending on the rate of supply, the
first term in Eq. (2) may counter balance the reaction velocity, so
that the affinity may become a constant. This new phenomenon
represents as system where one of the forces is fixed, and may
lead to a specific behavior in the evolution of the whole system
[2,16].
Evolution equation, in general, is expressed by

aY
— =Y, 3)
ot
where Y is the column vector with the elements of the state
variables Y1, ..., Y;, which are continuously subjected to either
internal fluctuations or external perturbations. The f is mainly
a nonlinear space operator and A denotes a set of controlling
parameters affecting the evolution, such as thermal conductivity,
diffusivity, chemical rate constants and initial concentrations of
reactants and products. The evolution equations for the dimen-
sionless concentration fs and the temperature ¢ in the form of
Eq. (3) become

aCs

W = fS[C557 CP57 TSa )"(T’ DS,e, DP,e, DT,e» &, 0, Vf7 A*a
oss, QS,eq’ rSq> T'rq> rsr)] 4

or .

E = fT[CSS»CP57 TSv )"(Ta Oley ,3, DS,es w»Ks Vf, )’b,A 9

05.,eq> 'Sqs Irqs sr, —AHy, Le)] (5)

As Egs. (4) and (5) suggest, the degree of couplings beside the
other parameters would control the evolution and stability of
the system. Comparison of Eq. (4) with the simple rate expres-
sion of dCs/dt=—k¢Cs + kp,Cp alone displays the expansion in
the number of controlling parameters in the coupled system of
an elementary reaction with heat and mass flows. Therefore,
induced cross-effects due to various coupling phenomena can



Y. Demirel / Chemical Engineering Journal 139 (2008) 106-117 117

allow the system to evolve to multiple solutions and diversify its
behavior depending on many controlling parameters [25,29].
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