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bstract

Nonisothermal reaction-diffusion systems control the behavior of many transport and rate processes in physical, chemical and biological systems,
uch as pattern formation and chemical pumps. Considerable work has been published on mathematically coupled nonlinear differential equations
y neglecting thermodynamic coupling between a chemical reaction and transport processes of mass and heat. This study presents the modeling of
hermodynamically coupled system of a simple elementary chemical reaction with molecular heat and mass transport. The thermodynamic coupling
efers that a flow occurs without or against its primary thermodynamic driving force, which may be a gradient of temperature or chemical potential
r reaction affinity. The modeling is based on the linear nonequilibrium thermodynamics approach by assuming that the system is in the vicinity of
lobal equilibrium. The modeling equations lead to unique definitions of cross-coefficients between a chemical reaction and heat and mass flows

n terms of kinetic parameters, transport coefficients and degrees of coupling. These newly defined parameters need to be determined to describe
ome coupled reaction-transport systems. Some methodologies are suggested for the determination of the parameters and some representative
umerical solutions for coupled reaction-transport systems are presented.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Considerable work has been published on mathematically
oupled nonlinear differential equations on reaction-diffusion
ystems in porous catalyst by neglecting the thermodynamic
oupling. Here, the thermodynamic coupling refers that a flow
i.e. heat or mass flow or a reaction velocity) occurs without
ts primary thermodynamic driving force, or opposite to the
irection imposed by its primary driving force. The principles
f thermodynamics allow the progress of a process without or
gainst its primary driving force only if it is coupled with another
pontaneous process. This is consistent with the statement of sec-
nd law, which states that a finite amount of organization may be
btained at the expense of a greater amount of disorganization
n a series of coupled spontaneous processes.

Thermodynamically coupled chemical reaction-transport
ystems control the behavior of many transport and rate pro-

esses in physical, chemical and biological systems, and require
through analysis accounting the induced flows by cross-effects

1–13]. More than 50 years ago, Turing [1] demonstrated that

∗ Tel.: +1 402 472 2745; fax: +1 402 4720 6989.
E-mail address: ydemirel2@unl.edu.

n
e
m
c
t
t
e

385-8947/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2007.07.079
g; Nonequilibrium thermodynamics; Degree of coupling

reaction-diffusion system with appropriate nonlinear kinetics
an cause instability in a homogeneous steady state and gener-
te stable concentration patterns. Also the energy coupling in
he membranes of living cells plays major role in the respira-
ory electron transport chain leading to synthesizing adenosine
riphosphate (ATP). The ATP synthesis in turn, is matched and
ynchronized to cellular ATP utilization ADP + Pi + nH+

in =
TP + H2O + nH+

out, where ‘in’ and ‘out’ denote two phases
eparated by a membrane and n is the ratio H+/ATP, show-
ng the level of transmembrane proton transport for each ATP
o be synthesized [7]. Consequently, the hydrolysis of ATP is
oupled to transporting substrates and maintaining the essential
hermodynamic forces of ion electrochemical gradients [2–6].
or example, Ca2+-ATPase in the plasma membranes of most
ells pump Ca2+ against a steep concentration gradient out of
ytosol, while simultaneously counterport H+ ions [5].

This study presents the modeling equations for thermody-
amically and mathematically coupled system of a reversible
lementary reaction with heat and mass flows. Such modeling
ay improve our understanding of some natural coupled pro-
esses, such as molecular pumps. The modeling is based on
he linear nonequilibrium thermodynamics (LNET) formula-
ions by assuming that the system is in the vicinity of global
quilibrium (GE). Experimental investigations revealed that

mailto:ydemirel2@unl.edu
dx.doi.org/10.1016/j.cej.2007.07.079
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Nomenclature

a1, a2 relations in Eq. (10)
A* nondimensional affinity in Eq. (53)
b relation in Eq. (50) (mol K m−2 s−1)
C concentration (mol m−3)
CSs reactant concentration at surface (mol m−3)
Da Damköhler number
DD,e coupling coefficient related to the Dufour effect

(J m2 mol−1 s−1)
DS,e effective diffusion coefficient for the substrate S

(m2 s−1)
DT,e coupling coefficient related to the Soret effect

(mol m−1 s−1 K−1)
E activation energy of the chemical reaction

(J mol−1)
�Hr reaction enthalpy (J mol−1)
J diffusive mass flux (flow) (mol m−2 s−1)
Jq conduction heat flux (flow) (W m−2)
Jr volumetric reaction rate (mol m−3 s−1)
ke effective thermal conductivity (W m−1 K−1)
kv first order reaction rate constant (s−1)
L characteristic half thickness (m)
Le modified Lewis number
Lik phenomenological coefficients
Lqr coupling coefficient between chemical reaction

and heat flow (mol K m−2 s−1)
LSr coupling coefficient between chemical reaction

and mass flow (mol2 K J−1 m−2 s−1)
n number of components
Nr number of independent reactions
t time (s−1)
T temperature (K)
V total volume of membrane (m3)
x ratio of forces
X thermodynamic force
z dimensionless distance

Greek letters
Φ volumetric entropy generation rate (W m−3 K−1)
αe effective thermal diffusivity (m2 s−1)
β thermicity group Eq. (15), dimensionless
ε dimensionless parameter related to Soret effect in

Eq. (52)
γ Arrhenius group Eq. (51)
η effectiveness, efficiency
ϕ dimensionless temperature in Eq. (15)
κ dimensionless parameter in Eq. (53)
λS relation in Eq. (17) (J m3 mol−2)
μ chemical potential
θ dimensionless concentration in Eq. (10)
ρ density (kg m−3)
σ dimensionless parameter in Eq. (52)
τ dimensionless time in Eq. (51)
ω dimensionless parameter related to Dufour effect

in Eq. (53)

Subscripts
D Dufour
e effective
eq equilibrium
q heat
r reaction
s surface
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S Soret
T thermal diffusivity

NET is capable of describing thermodynamically coupled pro-
esses of oxidative phosphorylation, mitochondrial H+ pumps
nd (Na+ and K+)-ATPase, because mainly due to enzymatic
eedback [2–5]. Moreover, the LNET formulation does not
equire the detailed mechanism of the coupling [4,5,15–18].
inetic descriptions and considerations may lead to a loss of

he generality characteristics of thermodynamic formulations,
ince the kinetics is based on specific models [3]. The model-
ng equations have produced some unique parameters related
o cross-coefficients between scalar process of chemical reac-
ion and vectorial processes of heat and mass flows. These
arameters combine the kinetic parameters, transport coeffi-
ients and degrees of thermodynamic coupling, and relate the
ross-interactions to measurable quantities. Some representative
olutions of coupled reaction-transport systems by Mathematica
re presented.

. Background

.1. Balance equations

We consider a reversible homogeneous elementary reaction

etween a substrate (S) and a product (P) S
kf
�
kb

P, where kf and

b are the forward and backward reaction rate constants, respec-
ively. This type of reaction system is common in chemical and
iological systems, such as unimolecular isomerization [17],
nzyme kinetics [2] and racemization of molecules with mirror-
mage structures [18]. The well known balance equations are

∂CS

∂t
= −∇JS + νSJr (1)

∂CP

∂t
= −∇JP + νPJr (2)

cp
∂T

∂t
= −∇Jq + (−�Hr)Jr (3)

here Jq is the vector of reduced heat flow Jq = q − ∑n
i=1JiHi,

the total heat flow, Hi the partial molar enthalpy of species
and �Hr is the heat of reaction. The reaction velocity
s dCS/νS dt = dCP/νP dt = Jr and the parameters νS and νP
re the stoichiometric coefficients, which are negative for
eactants (νS = −1). By using the Fick and Fourier laws in
ne-dimensional domain of y-direction and neglecting any ther-
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odynamic coupling, Eqs. (1)–(3) become

∂CS

∂t
= DS,e

∂2CS

∂y2 + νSJr (4)

∂CP

∂t
= DP,e

∂2CP

∂y2 + νPJr (5)

cp
∂T

∂t
= ke

∂2T

∂y2 + (−�Hr)Jr (6)

here Di,e is the effective diffusivity for component i and ke is
he effective thermal conductivity. For a simple slab geometry
hown in Fig. 1, the initial and boundary conditions are

= 0 : CS = CSo, CP = CPo, T = To (7)

y = ±L : CS = CSs, CP = CPs,

T = Ts (surface conditions) (8)

= 0 :
∂CS

∂y
= ∂CP

∂y
= ∂T

∂y
= 0 (symmetry conditions) (9)

here L is the half thickness of the slab. Diffusion may reduce
veraged rates relative to that obtained if the concentration was
verywhere CSs. This limitation is quantified as the effective-
ess factor η, and expressed as η = (1/V )(

∫
Jr(Ci) dV )/Jr(Cis),

here V is the volume [19].
At stationary state, eliminating the reaction terms from Eqs.

4) and (5), and integrating twice with the boundary conditions
iven above, concentrations of the species are related to each
ther by

P = a1 + a2(1 − θS) (10)
here

S = CS

CSs
, θP = CP

KCSs
, a1 = CPs

KCSs
, a2 = DS,e

KDP,e

Fig. 1. Schematic temperature and concentration profiles in a thin film.
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here K is the chemical reaction equilibrium constant. The value
f a1 determines the direction of reaction; the net reaction is
owards the P if a1 < 1. After relating the two concentrations by
q. (10), at stationary state Eq. (4) becomes

d2θS

dz2 = (DaS + DaP)θS − (DaSa1 + DaP) (11)

ith the boundary conditions

S(±L) = 1,
dθS

dz
(0) = 0 (12)

here z = y
L

aS = kfL
2

DS,e
, DaP = kbL

2

DP,e

aS and DaP are the Damköhler numbers and represent the
atios of the forward and backward reaction rates to the diffu-
ion velocities (Di,e/L). Therefore, they measure the intrinsic
ates of the reactions relative to that of the diffusions, and
epresent an interaction between reaction and diffusion [20].
f the reaction is very fast, Damköhler number is large. For
he product (P), an expression similar to Eq. (11) can also be
erived. Fig. 2 displays the concentration profiles of the species
f S and P at two different set of Damköhler numbers and
1 = 0.5. When DaS and DaP are very large the concentrations of
pecies S and P reach their equilibrium values within most of the
lm, and the approximate values of equilibrium concentrations
ecome [20]

S,eq ≈ θP,eq ≈ a1 + (DaP/DaS)

1 + (DaP/DaS)
(13)

The relative diffusivities through the ratio of Damköhler num-
ers affect the equilibrium concentrations. Near the exposed

urface (z = 0) the dimensional thickness of nonequilibrium
egion δ is proportional to the sum of the Damköhler numbers
20], and nondimensional nonequilibrium thickness z′ is pro-
ortional to ratio of reaction rate and effective diffusivity and

ig. 2. Concentration profiles for diffusion in a film with a reversible reac-
ion. Bold line DaS = 90, DaP = 80, a1 = 0.5. Dashed line DaS = 1.0, DaP = 1.0,

1 = 0.5.
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ndependent of the thickness L

′ = δ

L
∼ 1√

DaS + DaP
∼ 1√

k/De
(14)

For large values of Damköhler numbers, the effectiveness
ecomes η ∼ 1/

√
Da [19].

By eliminating of the reaction terms from Eqs. (4) and (6)
nd integrating twice with the known boundary conditions, the
emperature is related to the concentration by

= 1 + β(1 − θS) (15)

here

= T

Ts
, β = (−�Hr)DS,eCSs

(−νS)keTs

he value of β is a measure of nonisothermal effects; as β

pproaches zero, system becomes isothermal.

.2. Phenomenological equations

Reaction-diffusion systems with heat effects represent open
nd nonequilibrium systems with thermodynamic forces of tem-
erature gradient, concentration gradient and affinity. For the
hemical reaction-transport system the local rate of entropy
roduction is [8,21]

= Jq∇
(

1

T

)
− JS

(∇μS)T,P

T

−JP
(∇μP)T,P

T
+ JrS

A

T
≥ 0 (16)

here (∇μi)T,P = ∑n−1
i=1 (∂μi/∂Ci)∇Ci. By using the

ibbs–Duhem equation at constant temperature and pres-
ure (CS�μS + CP�μP = 0) and no volume flow condition
JSVS + JPVP = 0), where Vi is the partial molar volume of
pecies i, Eq. (16) becomes

= −Jq

(
1

T 2

)
∇T − JS

1

T
λS∇CS + JrS

A

T
≥ 0 (17)

here

S =
(

1 + CS

CP

) (
∂μS

∂CS

)
T,P

, for (VS ≈ VP)

here Ji is the vector of mass flows, μi the chemical poten-
ial of species i and A is the affinity (A = − ∑

νiμi). Eq. (17)
onsists of scalar processes of chemical reactions and vecto-
ial processes of heat and mass flows, while it excludes viscous,
lectrical, and magnetic effects. Eq. (17) identifies the following
ndependent conjugate flows Ji and forces Xk to be used in the
inear phenomenological equations (PEs) when the system is in
he vicinity of GE
S = −LSS
1

T
λS∇CS − LSq

1

T 2 ∇T + LSr
A

T
(18)

q = −LqS
1

T
λS∇CS − Lqq

1

T 2 ∇T + Lqr
A

T
(19)

c
l
t
s
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r = −LrS
1

T
λS∇CS − Lrq

1

T 2 ∇T + Lrr
A

T
(20)

.3. The phenomenological coefficients

The phenomenological coefficients Lik appearing above
re related by various constraints, such as Onsager’s reci-
rocity, Gibbs–Duhem equation at equilibrium, and the choice
f reference frame for diffusivities. The type the constraints,
n the other hand, depends on the choice of conjugate
ows and forces, and frame of reference. Due to Onsager’s
eciprocal rules (Lik = Lki) the number coefficients to be
etermined would be six instead of nine when the conju-
ate flows and forces are identified by a proper entropy
eneration relation and the flows are related to the forces lin-
arly.

Onsager’s reciprocal relations states that Lik = Lki if Ji and
k have the same parity under time reversal and Lik = −Lki if
i and Jk have the opposite parity. In the absence of perti-
ent symmetries or invariances, all types of cross-couplings
re possible and lead to nonvanishing cross-coefficients Lik.
f the structure of the system is invariant with respect to
ome or all of the orthogonal transformations, then the
nvariance will eliminate certain cross-couplings and their
ross-coefficients will vanish. If these symmetries are not
xact then the corresponding cross-couplings would be weak
nd negligible. Of course the discussions above are valid
nly if the entropy production relation is properly derived
sing the correct and specific physics of a system considered
22].

For the nonvanishing cross-coefficients Lik, all the forces con-
ribute for each flow. Here, Eqs. (18)–(20) take into account
he thermodynamic couplings between vectorial processes and
etween vectorial and scalar processes, which is possible in
n anisotropic medium according to the Curie–Prigogine prin-
iple [15]. Curie–Prigogine principle states that “macroscopic
auses always have fewer or equal symmetries than the effects
hey produce.” Therefore, a scalar thermodynamic force such as
hemical affinity, which has the high symmetry of isotropy, can-
ot cause a diffusion flow, which has lower symmetry because
f its directionality. We can also state that a scalar cause
annot produce a vectorial effect, and generally, irreversible
rocesses of different tensorial character (scalars, vectors and
igher-order tensors) do not couple with each other. Therefore,
he cross-coefficients LSr, LrS, Lqr and Lrq would vanish in
sotropic media (as commonly assumed) or would have vec-
orial character due to morphology of the interface, which
eparates reactants and products or due to compartmental struc-
ure causing an anisotropic character. For example, in active
ransport in biological cells, the hydrolysis of ATP is coupled
ith the flow of sodium ions outside of the cell. The flow
oupling mechanisms in mitochondria. The medium may be
ocally isotropic, although it is not spatially homogenous. In
his case, the coupling coefficients are associated with the whole
ystem [2].
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.4. The degrees of couplings

The cross-coefficients determine the degrees of couplings
etween the pair of flows

rSq = LSq

(LSSLqq)1/2 , rSr = LSr

(LSSLrr)1/2 ,

rrq = Lrq

(LrrLqq)1/2 (21)

ere, rSq is the degree of coupling between heat and mass
ows, rSr between chemical reaction and heat flow and rrq is
etween chemical reaction mass flow. The vectorial character of
he degrees of couplings rSr and rrq may reflect the morphologi-
al and/or compartmental structure of medium where couplings
ccur as well as the properties of the cross-coefficients LSr and
rq [2,5,8,15,16,18].

.5. Determination of the coefficients

The diagonal elements of the phenomenological coefficients
ik matrix L may be identified using the Fick, Fourier and the
ass action laws. Comparison of the first term on the rhs of
q. (18) with Fick’s law (J = −DS,e�CS) yields LSS = DS,eT/λS.
imilarly, comparison of the second term on the rhs of Eq.
19) with Fourier’s law (Jq = −ke�T) yields Lqq = keT2. The
ross-coefficients (LSq or LqS) may be represented by the Soret
oefficient (sT) or the thermal diffusion coefficient (DT), which
re related to each other by LSq = sTDS,eT2CS = DTT2CS. The
oret coefficient is the ratio of thermal diffusion coefficient

o ordinary diffusion coefficient (ST = DT/DS,e) at steady state.
he Soret coefficient changes in the range 10−2 to 10−3 K−1

or gases, nonelectrolytes and electrolytes, however it might be
arger for polymer solutions [18,23]. The LqS (=DTT2CS) may
e expressed by the Dufour coefficient DD LqS = DDCST/λS. For
qS = LSq, we have DD = DTTλS, which is proved experimentally
18]. For liquids, the diffusion coefficient D is of the order of
0−5 cm2 s−1 and the thermal diffusion coefficient DT is of the
rder of 10−8 to 10−10 cm2 s−1 K. For gases, the order of magni-
ude for D and DT is 10−1 cm2 s−1 and 10−4 to 10−6 cm2 s−1 K,
espectively [18,21,24].

We may define two new effective diffusion coefficients of
DT,e and DD,e) that are related to the thermal diffusion and the
ufour effect, respectively

T,e = LSq
1

T 2 = sTDS,eCS = DTCS (22)

D,e = LqS
λS

T
= DDCS (23)

As the general transport equations are for an anisotropic
edium to support the thermodynamic coupling between the
calar and the vectorial processes, the transport coefficients
uch as k and D become tensors of the second rank � and D
8,18,20]. Here the effective transport coefficients incorporat-
ng the effects of the medium are taken into account for the
implicity.

J

J

Journal 139 (2008) 106–117

.6. Reaction velocity

The affinity for the reaction considered is A = μS − μP. The
eaction velocity Jr in terms of affinity is [8,16,18]

r = Jrf

(
1 − exp

(
− A

RT

))
(24)

here Jrf = kfCS. If we expand Eq. (24) at near GE state, which
ay be specified by the inequality |A/RT| 	 1, then we have an

pproximate linear relationship between the reaction velocity
nd the chemical affinity for an elementary reaction

r = Jrf,eq

R

A

T
(25)

Thus, an elementary reaction rate is uniquely defined by
he corresponding affinity since Jrf,eq becomes constant due to
niform concentration at equilibrium when a system is in the
icinity of GE with fast diffusion and heat conduction processes.
omparing the third term on the right of Eq. (20) with Eq. (25),

he coefficient Lrr is defined by

rr = Jrf,eq

R
= kfCS,eq

R
= ko exp(−Ef/RT )CS,eq

R
(26)

here ko is the frequency and Ef is the activation energy for
he forward reaction. The Lrr is dependent on the rate constant
nd consequently on the equilibrium concentration CS,eq and the
mount of chemical catalyst.

Linear flow-force relations are valid when the Gibbs free
nergy ranges less than 1.5 kJ mol−1 for chemical reactions
15,18]. However, some selected biological pathways occur at
ear GE conditions [2,3], and for some chemical reactions, the
ormalism of LNET can be used in wider ranges than usually
xpected [14,25–28]. By conservation of mass, some flow-force
elations of enzyme catalyzed and other chemical reactions can
e described by a simple hyperbolic-tangent function. There-
ore, a plot of reaction velocity versus affinity has three regions;
he regions at very high positive and negative values of affin-
ty, the reaction velocity is almost independent of affinity. In
etween, however, the reaction velocity varies smoothly leading
o a quasi-linear region around the inflection point. This region
xtends the linear flow-force relations over a 7 kJ mol−1 with
n error in the reaction velocity less than 15%. This behavior
s independent of the reaction rate constants, and mainly occurs
ue to conservation conditions [27].

.7. The modified phenomenological equations

With these newly defined primary and cross-coefficients, Eqs.
18)–(20) become

S = −DS,e∇CS − DT,e∇T + LSr
A

T
(27)
q = −DD,e∇CS − ke∇T + Lqr
A

T
(28)

r = −LrS
1

T
λS∇CS − Lrq

1

T 2 ∇T + kfCS,eq

R

A

T
(29)
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.8. Determination of cross-coefficients for
eaction-transport system

If we can control the temperature and concentration gradients,
he coupling coefficients between the chemical reaction and the
ows of mass and heat may be determined by the following
elations

LrS = LSr =
(

JS

A/T

)
∇CS=0,∇T=0

=
(

∂JS

∂(A/T )

)
∇CS,∇T

∼=
(

�JS

�(A/T )

)
∇CS,∇T

(30)

Lrq = Lqr =
(

Jq

A/T

)
∇CS=0,∇T=0

=
(

∂Jq

∂(A/T )

)
∇CS,∇T

∼=
(

�Jq

�(A/T )

)
∇CS,∇T

(31)

For a closed system at stationary state JS = 0, we have

S = 0 = −DS,e∇CS − DT,e∇T + LSr
A

T
(32)

Sr =
(

DS,e
∇CS

A/T
+ DT,e

∇T

A/T

)
= LrS (33)

Using A = RT ln(Jrf/Jrb) in Eq. (33), we get

Sr = 1

R ln(Jrf/Jrb)
(DS,e∇CS + DT,e∇T ) = LrS (34)

On the other hand, at chemical equilibrium, where A = 0 and
r = 0, we have

r = 0 = −LrS
1

T
λS∇CS − Lrq

1

T 2 ∇T (35)

nd the two coupling coefficients are related to each other by

rq = −LrSTλS
∇CS

∇T
= Lqr (36)

By using the relationship −CSsT =�CS/�T at steady state,
he coefficient Lrq in terms of the Soret coefficient sT becomes

rq = LrSTλSCSsT (37)

Using Eq. (34) in Eq. (37), we find

rq = TλSCSsT

A/T
[DS,e∇CS + DT,e∇T ] (38)

qs. (34) and (38) suggest that the cross-coefficients Lrq and LrS
re related to the gradients of concentration and temperature, and
ontrol the induced effects between vectorial flows of heat and
ass, and the scalar reaction velocity.

. Coupled system of chemical reaction and heat and

ass flows

By inserting Eqs. (27)–(29) into Eq. (1) and Eq. (3), we may
escribe the thermodynamically and mathematically coupled

w

l
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ystem of chemical reaction and heat and mass flows

∂CS

∂t
= −∇

(
−DS,e∇CS − DT,e∇T + LSr

A

T

)

−
(

−LrS
λS

T
∇CS − Lrq

T 2 ∇T + kfCS,eq

R

A

T

)
(39)

cp
∂T

∂t
= −∇

(
−DD,e∇CS − ke∇T + Lqr

A

T

)

+(−�Hr)

(
−LrS

λS

T
∇CS − Lrq

T 2 ∇T + kfCS,eq

R

A

T

)

(40)

Under mechanical equilibrium, we have

(μi

T

)
=

[
μi − T

(
∂μi

∂T

)]
∇

(
1

T

)
+ (∇μi)T

T

= −Hi

∇T

T 2 + (∇μi)T

T
(41)

here Hi is the partial enthalpy of species i. By using
he definition of affinity (A = μS − μP) and Eq. (41) for
he two components S and P with the Gibbs–Duhem
quation (CS�μS + CP�μP = 0) and the following relations
S = (1 + CS/CP)(∂μS/∂CS)T,P (for VS = VP), �Go

r + T �Sr =
Hr we obtain(

A

T

)
=

(
∇

(μS

T

)
− ∇

(μP

T

))
= λS

T
∇CS − −�Hr

T 2 ∇T

(42)

ubstituting Eq. (42) in Eqs. (39) and (40), we have

∂CS

∂t
= DS,e∇2CS + DT,e∇2T + Lrq + LSr(−�Hr)

T 2 ∇T

−kfCS,eq

R

A

T
(43)

cp
∂T

∂t
= DD,e∇2CS + ke∇2T − λS[(−�Hr)LrS + Lqr]

T
∇CS

+ (−�Hr)kfCS,eq

R

A

T
(44)

here the group (A/RT) is the dimensionless affinity A* and may
e expressed by

∗ = A

RT
= lnK(T ) + ln

(
aS

aP

)
= ln

(
kf

kb

)
+ ln

(
CS

CP

)

(45)

n Eq. (45), the activities of aS and aP are assumed to be equal to
oncentrations CS and CP, respectively, by neglecting the non-
deality effects on the species. Using the Arrhenius equations,

e have

n

(
kf

kb

)
= Eb − Ef

RT
(46)
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sing Eq. (46), we reduce Eqs. (43) and (44) to

∂CS

∂t
= DS,e∇2CS + DT,e∇2T + Lrq + LSr(−�Hr)

T 2 ∇T

−
[
CS,eqko exp

(−Ef

RT

)] (
Eb − Ef

RT
+ ln

(
CS

CP

))

(47)

cp
∂T

∂t
= DD,e∇2CS + ke∇2T − λS[(−�Hr)LrS + Lqr]

T
∇CS

+(−�Hr)

[
CS,eqko exp

(−Ef

RT

)]

×
(

Eb − Ef

RT
+ ln

(
CS

CP

))
(48)

ne-dimensional forms of Eqs. (47) and (48) in the y-direction
re

∂CS

∂t
= DS,e

∂2CS

∂y2 + DT,e
∂2T

∂y2 + b

T 2

∂T

∂y

−
[
CS,eqko exp

(−Ef

RT

)] (
Eb − Ef

RT
+ ln

(
CS

CP

))

(49)

∂T

∂t
= DD,e

ρcp

∂2CS

∂y2 + αe
∂2T

∂y2 − λSb

ρcpT

∂CS

∂y

+ −�Hr

ρcp

[
CS,eqko exp

(−Ef

RT

)]

×
(

Eb − Ef

RT
+ ln

(
CS

CP

))
(50)

here

= Lrq + LSr(−�Hr) = Lrr[Lqqr
2
rq + LSSr2

Sr(−�Hr)]

= kfCS,eqT

R

(
keTr2

rq +
(

DS,e

λS

)
r2

Sr(−�Hr)

)

qs. (49) and (50) use the same initial and boundary conditions
iven in Eqs. (7)–(9). With the following parameters

z = y

L
, τ = DS,et

L2 , DaS = L2ko exp(Ef/RTs)

DS,e
,

f = Ef
, γb = Eb

, Le = ke/ρCp = αe (51)

RTs RTs DS,e DS,e

ondimensional forms of Eqs. (49) and (50) become

∂θS

∂τ
= ∂2θS

∂z2 + ε
∂2ϕ

∂z2 + σ

ϕ2

∂ϕ

∂z

−A∗DaSθS,eq exp

[
γf

(
1 − 1

ϕ

)]
(52)

w
s
L
r
t
f
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1

Le

∂ϕ

∂τ
= ∂2ϕ

∂z2 + ω
∂2θS

∂z2 − κ

ϕ

∂θS

∂z

+A∗DaSβθS,eq exp

[
γf

(
1 − 1

ϕ

)]
(53)

here

ε = DT,eTs

DS,eCSs
, ω = DD,ecs

keTs
,

σ = bL

TsDS,eCSs
= [Lrq + LSr(−�Hr)]L

TsDS,eCSs
, κ = bCSsLλS

keT 2
s

nd

∗ =
(

γb − γf

ϕ

)
+ ln

(
θS

K[a1 + a2(1 − θS)]

)
;

The parameter b is defined in Eq. (50). These equations sug-
est that the degree of couplings beside the other parameters
ould control the evolution and stability of the system. There-

ore, induced effects due to various coupling phenomena can
ncrease the possibility that the system may evolve to multiple
tates and diversify its behavior [27,30]. The parameters ε, σ, ω
nd κ above are associated with the cross-coefficients and hence
ontrol the coupled phenomena in the y-direction. Specifically,
he ε and ω control the coupling between mass and heat flows,
hile the σ and κ control the coupling between the chemical

eaction and mass flow, and chemical reaction and heat flow,
espectively. The initial and boundary conditions based on Eqs.
7)–(9) become

τ = 0 : θS = θSo, θP = θPo, ϕ = ϕo

z = ±1, τ > 0 : θS = 1, θP = 1, ϕ = 1

z = 0, τ > 0 :
∂θS

∂z
= ∂θP

∂z
= ∂ϕ

∂z
= 0

(54)

ere, the nondimensional concentrations θS and θP are related
pproximately to each other by the relation θP = a1 + a2(1 − θS),
lthough it is derived for stationary states. Accuracy of the
olutions obtained from Eqs. (52) and (53) depends on the
eliable data, such as the effective transport coefficients and
ross-coefficients. The parameter b in terms of the degrees of
ouplings rqr and rSr may improve the accuracy since the degrees
f couplings vary between −1 and +1. Some processes will
ot be dependent on some of the forces when some certain
ross-coefficients vanish naturally. For example, some degrees
f imperfections due to parallel pathways of reaction or intrinsic
ncoupling within the pathway itself may lead to leaks and slips
n mitochondria [3,5].

. Some special cases of coupled phenomena

Previously, we have considered the one-dimensional case
here heat and mass flows are coupled in a reaction-diffusion

ystem with heat effects, in which the cross-coefficients Lrq and

qr as well as LrS and LSr have vanished [21]. This means that the
eaction velocity is coupled neither with the heat flow nor with
he mass flow. Now we present the one-dimensional modeling
or the following thermodynamically coupled systems:
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1) Coupled phenomena at stationary state.
2) No coupling exists between the heat flow and chemical

reaction: Lrq = Lqr = 0.
3) No coupling exists between the mass flow and chemical

reaction: LrS = LSr = 0.

In all the systems above, heat and mass flows are still
hermodynamically coupled. The modeling equations for these
rocesses are derived and discussed briefly in the following
ections.

.1. Stationary coupling of chemical reactions with heat
nd mass flows

Stationary forms of Eqs. (52) and (53) are

=∂2θS

∂z2 + ε
∂2ϕ

∂z2 + σ

ϕ2

∂ϕ

∂z
−A∗DaSθS,eq exp

[
γ

(
1 − 1

ϕ

)]

(55)

=∂2ϕ

∂z2 +ω
∂2θS

∂z2 − κ

ϕ

∂θS

∂z
+ A∗DaSβθS,eq exp

[
γ

(
1 − 1

ϕ

)]

(56)

The boundary conditions are defined in Eq. (54).
sing the previously derived relations ϕ = 1 + β(1 − θS) and

P = a1 + a2(1 − θS) in Eq. (55), the temperature ϕ is related to
he concentration θS and the concentrations θP and θS are related
o each other, and we have

= (1 − εβ)
d2θS

dz2 − σβ

[1 + β(1 − θS)]2

dθS

dz

−
[(

γb − γf

1 + β(1 − θS)

)
+ ln

θS

a1 + a2(1 − θS)

]
DaSθS,eq

× exp

[
γ

(
1 − 1

1 + β(1 − θS)

)]
(57)

here the products εβ and βσ

βε = (−�Hr)DT,e

(−νS)ke
,

βσ = (−�Hr)bL

(−νS)keT 2
s

= (−�Hr)[Lrq + LSr(−�Hr)]L

(−νS)keT 2
s

epresent the cross-effects due to the thermodynamic coupling
t steady state. Similarly, an equation can be derived for the
emperature ϕ.

.2. Chemical reaction velocity coupled to mass flow:
rq = Lqr = 0

This specific coupling may approximately represent the

ctive transport in biological cells in which hydrolysis of ATP is
oupled with the uphill transport of ions. Experimental investi-
ation of biological energy coupling systems shows that LNET
ormulation is capable of describing mitochondrial H+ pumps

t

L
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3] and helps understanding molecular slips and ion leaks of
a2+ and H+ [5,7].

The following rate of entropy production equation shows the
wo contributions when there is no heat effect [2].

= −JS
1

T
λS∇CS + JrS

A

T
= mass flow + chemical reaction

= output + input ≥ 0 (58)

or the active transport in a biological cell, the chemical
eaction term (JrS(A/T)) represents the hydrolysis of ATP,
hich facilitates pumping the ions opposite to the direction

mposed by their thermodynamic forces, and hence we have
−JS(1/T)λS�CS) < 0. The efficiency of energy conversion for
ctive transport may be related to the degree of coupling by using
q. (58)

= output

input
= −JS(1/T )λS∇CS

JrS(A/T )
= x[(LSS/Lrr)1/2x + rSr]

rSr + (Lrr/LSS)1/2

(59)

here x is the ratio of thermodynamic forces
[(1/T)λS�CS/(A/T)]. The optimal efficiency would be a
unction of the degree of coupling [2–4,13].

When the cross-coefficients Lrq and Lqr vanish in Eqs.
27)–(29), the PEs become

S = −DS,e∇CS − DT,e∇T + LSr
A

T

q = −DD,e∇CS − ke∇T (60)

r = −LrS
1

T
λS∇CS + koexp(−Ef/RT )CS,eq

R

A

T
(61)

o that the one-dimensional balance equations are

∂θS

∂τ
= ∂2θS

∂z2 + ε
∂2ϕ

∂z2 + σ′

ϕ2

∂ϕ

∂z

−A∗DaSθS,eq exp

[
γ

(
1 − 1

ϕ

)]
(62)

1

Le

∂ϕ

∂τ
= ∂2ϕ

∂z2 + ω
∂2θS

∂z2 − κ′

ϕ

∂θS

∂z

+A∗DaSβθS,eqexp

[
γ

(
1 − 1

ϕ

)]
(63)

here

′ = [LSr(−�Hr)]L

TsDS,eCSs
; κ′ = [LSr(−�Hr)]CSsLλS

keT 2
s

By relating the cross-coefficient to the degree of coupling rSr,

he cross-coefficient LSr may be eliminated

Sr = rSr(LSSLrr)
1/2 = rSr

(
DS,eT

λs

kfCS,eq

R

)1/2

(64)
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Fig. 3. Dimensionless temperature and concentration profiles obtained from Eqs. (62) and (63) with γ = 27, β = 0.066, Le = 0.11, ε = 1.0, ω = 0.01, A* = 0.1, σ′ = 0.1,
κ′ = 0.001.

Fig. 4. Spatial integral averages obtained from Eqs. (66) and (67) using Eqs. (62) and (63): (a) change of temperature with concentration when the time varies
between 0 and 1, (b) change of concentration with time and (c) change of temperature with time for γ = 27, β = 0.066, Le = 0.11, ε = 1.0, ω = 0.01, A* = 0.1, σ′ = 0.1,
�′ = 0.001.
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nd the parameters σ′ and κ′ are defined in terms of the degree
f coupling rSr

σ′ = rSr

(
DS,eT

λs

kfCS,eq

R

)1/2 [(−�Hr)]L

TsDS,eCSs
,

κ′ = rSr

(
DS,eT

λs

kfCS,eq

R

)1/2 (−�Hr)CSsLλS

keT 2
s

(65)

he parameter κ′ combines the forward reaction rate constant,
iffusivity coefficient and thermal conductivity, and hence may
eflect an ‘indirect interaction’ between chemical reaction and
eat flow with vanishing cross-coefficients of Lrq and Lqr.

During a diffusion-controlled reaction, matter may be trans-
orted through an interface, which separates the reactants and
he product. The progress of the reaction may be affected
y the morphology of the interface with complicated struc-
ure, which controls the boundary conditions for the transport
roblem [27–29]. Morphological stability of interfaces in
onequilibrium systems may lead to self-organization and/or
attern-formation in biological, physical, chemical and geolog-
cal systems [26,29]. Turing [1] demonstrated that even some
imple reaction-diffusion systems could lead to spatial orga-
izations due to instability of stationary structure depending
n the activator–inhibitor interactions, control parameters and
oundary conditions (see Appendix A).

.2.1. Concentration and temperature profiles
The Mathematica is used to solve the thermodynamically

oupled systems of Eqs. (62) and (63) with the maximum steps
f infinity. Fig. 3 displays the dynamic behavior of the concentra-
ions and temperatures at two different Damköhler numbers. For
he fast reaction case with DaS = 100.0, nonequilibrium region is
onsiderably smaller and attained at a shorter time. For the slow
eaction case with DaS = 1.0, the system remains in nonequilib-
ium for most of the time and throughout the thickness of the
lm. The surfaces of temperature closely follow the change in
oncentrations, and reflect the effect of Damköhler numbers. As
xpectedly, the rise of temperature is small as the value of β is
elatively small.

Since the dynamic behavior of a reaction-transport system
ay be more apparent with the state–space diagrams, the tem-

erature and concentration profiles are replaced with the spatial
ntegral averages obtained from

′(τ) =
∫ 1

0
θ(z, τ) dz (66)

′(τ) =
∫ 1

0
ϕ(z, τ) dz (67)

Fig. 4a compares the state–space plots of temperature ver-
us concentration when the time changes from zero to one.
ig. 4b and c shows the changes of the spatial integral aver-
ges of temperatures and concentrations. The spatial integral

verage of concentration reaches its equilibrium value approxi-
ately at τ = 0.4 at DaS = 100. The changes are relatively sharp

t DaS = 100.0 while they are gradual at DaS = 1.0, as expected.
ig. 5 shows the spatial integral averages of temperatures and

J

J

aries between 0 and 1, (b) change of concentration with time and (c) change
f temperature with time for DaS = 100.0, γ = 27; β = 0.066; Le = 0.11, ε = 1.0,
= 0.001, A* = 0.1; σ′ = 0.001; κ′ = 0.001.

oncentrations at DaS = 100 with different values of coupling
arameters. The marginal changes on the spatial integral aver-
ges of temperatures and concentrations may result from the
oupling effects.

.3. Chemical reaction velocity coupled to heat flow:
Sr = LrS = 0

The cross-coefficients LSr and LrS vanish, and we have the
ollowing new PEs
S = −DS,e∇CS − DT,e∇T (68)

q = DD,e∇CS − ke∇T + Lqr
1

T
A (69)
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r = −Lrq
1

T 2 ∇T + ko exp(−Ef/RT )CS,eq

R

A

T
(70)

So that the one-dimensional balance equations become

∂θS

∂τ
= ∂2θS

∂z2 + ε
∂2ϕ

∂z2 + σ′′

ϕ2

∂ϕ

∂z

−A∗DaSθS,eq exp

[
γ

(
1 − 1

ϕ

)]
(71)

1

Le

∂ϕ

∂τ
= ∂2ϕ

∂z2 + ω
∂2θS

∂z2 − κ′′

ϕ

∂θS

∂z

+A∗DaSβθS,eq exp

[
γ

(
1 − 1

ϕ

)]
(72)

here

′′ = LqrL

TsDS,eCSs
, κ′′ = LqrCSsLλS

keT 2
s

y relating the parameters σ′′ and κ′′ and the cross-coefficient
o the degree of coupling rqr, we have

qr = rqr(LqqLrr)
1/2 = rqr

(
keT

2 kfCS,eq

R

)1/2

(73)

σ′′ = rqr

(
keT

2 kfCS,eq

R

)1/2
L

TsDS,eCSs
,

κ′′ = rqr

(
keT

2 kfCS,eq

R

)1/2
CSsLλS

keT 2
s

(74)

he parameter σ′′ combines the transport and rate coefficient of
e, DS,e and kf.

. Conclusions

The balance equations are derived for thermodynamically
nd mathematically coupled system of chemical reaction and
eat and mass flows. This effort may be a starting point to
nderstand the molecular coupled phenomena between vecto-
ial and scalar processes, such as active transport in biological
ells. These modeling equations are based on the linear nonequi-
ibrium thermodynamics approach assuming that the system is in
he vicinity of global equilibrium and has anisotropic character.
he equations have revealed definitions of some unique param-
ters related to the cross-coefficients between the scalar process
f chemical reaction and the vectorial processes of heat and mass
ows. These parameters combine kinetic parameters, transport
oefficients, and degrees of thermodynamic couplings leading
o a path for determinations of these parameters by some mea-

urable quantities. The representative solutions of the modeling
quations for the coupled chemical reaction-mass flow system
re in line with the behavior of fast and slow chemical reactions
n a film.

s
t
a
i
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ppendix A

If we consider the change of affinity with time at constant
emperature and pressure, we have

dA

dt
=

(
∂A

∂CS

)
T,P

dCS

dt
(1)

t is possible to split the dCS into two parts: dCS = deCS + diCS,
hich are the part resulting from the exchange with the sur-

ounding and the part due to a chemical reaction. The rate of the
econd part is the reaction velocity diCS/dt = νSJr. With these
elations Eq. (1) yields

dA

dt
=

(
∂A

∂CS

)
T,P

deCS

dt
− JrS

(
∂A

∂CS

)
T,P

(2)

q. (2) shows that affinity changes by rate of supply of matter and
hemical reaction velocity. Depending on the rate of supply, the
rst term in Eq. (2) may counter balance the reaction velocity, so

hat the affinity may become a constant. This new phenomenon
epresents as system where one of the forces is fixed, and may
ead to a specific behavior in the evolution of the whole system
2,16].

Evolution equation, in general, is expressed by

∂Y
∂t

= f (Y, λ) (3)

here Y is the column vector with the elements of the state
ariables Y1, . . ., Yi, which are continuously subjected to either
nternal fluctuations or external perturbations. The f is mainly

nonlinear space operator and λ denotes a set of controlling
arameters affecting the evolution, such as thermal conductivity,
iffusivity, chemical rate constants and initial concentrations of
eactants and products. The evolution equations for the dimen-
ionless concentration θS and the temperature ϕ in the form of
q. (3) become

∂CS

∂t
= fS[CSs, CPs, Ts, λ(τ, DS,e, DP,e, DT,e, ε, σ, γf, A

∗,

φSs, θS,eq, rSq, rrq, rSr)] (4)

∂T

∂t
= fT[CSs, CPs, Ts, λ(τ, αe, β, DS,e, ω, κ, γf, γb, A

∗,

θS,eq, rSq, rrq, rSr, −�Hr, Le)] (5)

s Eqs. (4) and (5) suggest, the degree of couplings beside the
ther parameters would control the evolution and stability of
he system. Comparison of Eq. (4) with the simple rate expres-

ion of dCS/dt = −kfCS + kbCP alone displays the expansion in
he number of controlling parameters in the coupled system of
n elementary reaction with heat and mass flows. Therefore,
nduced cross-effects due to various coupling phenomena can
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llow the system to evolve to multiple solutions and diversify its
ehavior depending on many controlling parameters [25,29].
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